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The behaviour of the electronic energy for the ground state
of a one-electron heteronuclear diatomic molecule in the vicinity
of the united atom is obtained through terms of order R5 in the
internuclear distance R . The presence of a term in R5 log R
reveals that the electronic energy is not an analytic function
of R at the united atom. The expansion is checked by means

the Hellmann-Feynman theorem-and the work of Dalgarno and

Lynn. | W{
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PREFACE

This report is a revised and extended version of
WIS-TCI-33. The extension is from terms of order R4 to

5 . . .
terms of order R™ 1in the electronic energy as a function

of internuclear distance R . The chief revisions are:

(i) simpler definition of the separation constant C ;

(ii) re-definition of the heterogeneity index k ;

(iii) use of a three-term, rather than a five-term, recursion

relation for the coefficients in the solution of the inner

equation.



INTRODUCTION

The total energy of a diatomic molecule AB in a stationary
electronic state with fixed internuclear separation R may be

written

EQRY = W) + Z3,/R, W

where W 1is the electronic energy and Za’ Zb are the atomic
numbers of the nuclei. Since the electronic energy is finite

for all values of R it is natural to assume that it is analytic

and may”be expaﬁded about R = 0 in powers . of R :
L } . IS
W(R) = Wo + AW+ R*w, + KW, +R¥w r... 2

The leading term Wo = W(0) 1is the energy of the united
atom with atomic number Z = Z, + Z, , and R. A, Buckingham1
pointed out that the first coefficient Wl always vanishes
exactly, even for many-electron heteronuclear molecules.
The second coéfficient was obtained by Bingel2 from a first-

order perturbation treatment based on the united atom, and is

given by (atomic units)

\NZ = Zib{ %-TTP\’,A‘(O) -1 sz(“‘e);s?uk(ﬂ),dr] , (3)



where PUA(L) is the electron density of the united atom; the
seéénd term in the bracket is essentially the field gradient at
the nucleus, and vanishes for an S-state. Bingel also obtained
a general expression for the third coefficient W3 from his |
first-order treatment, by arguing thap the second-order perturbatiqn
energy would be of order R4 and contribute only to W4 and
higher terms. However, earlier work by the authors3 on the
one-electron case, which may be analyzed explicitly, showed that
Bingel's formula was incorrect. More recently, Levine4 has
obtained the second-order energy explicitly for a homonuclear
one-electron molecule, and shown that it is of order R3

It appears to be extremely difficult to analyze the second-order
perturbation energy in the general case of a many-electron
molecule. However, the form of w3 in the general case has
recently been derived5 by an alternative route based on the
Hellmann-Feynman expression for the force dW/dR , and is

given by

Wy = =23 Zwplo . )

It is of great interest to know the general form of the
higher terms in equation (2); As a firgt step it seems prudent
to carry the explicit analysis of the ground state of the one-
electron system further, and this is the object of the present

paper.




ELECTRONIC ENERGY

The electronic energy W(R, Z.> Zb) possesses two simple
features as g function of R , Za s Z.b . The first is symmeytry

with respect to the interchange of nuclei A and B , and is

true for many-electron molecules:

WCE, 2, 2,) = W, ,2a) . (5)

The second property, peculiar to one-electron molecules, is that

‘W is homogeneous and of degree two in Z_ , Z, and 1/R. In

view.of these features, ﬁ_ may be written in the form
2 . :
W (R, %) = 2 w (R, 2h/2Y). 6)

There are, therefore, essentially only two independent variables

in W . The limiting values for the ground state of the molecule
are: “
: , | a2
(a) United atom, R =0 s W=~ 3 2.

- A
(b) Separated atoms, R = ©9 : W = —7"?:“ (2> ’2‘[,)

; s
(¢c) Atom A , Z =0 - : W""%,La )WM(},%B

b



Certain other features of W are known.

(a) As mentioned above, the force between the nuclei due to the

electronic motion vanishes at the united atom, so that

(aw/>R) = W, = 0. @)
R=0

(b) By the Hellmann-Feynman theorem

(ow/d ?">2;.=0 X @)

where ¢a(R) is the electrostatic potential due to atom A at

distance R from the nucleus and is given by

@)~ - \ fa® 4o 9
* c- R}’

where Pa(r) is the electron density of atom A .

(c) The perturbation of the one-electron atom A by a charge Zb
at distance R can be treated analytically. The first-order

energy is precisely equation (8). The second-order energy is
L (Fwiz) ,
2 'ZL”‘O

and has been obtained by Dalgarno and Lynn6, and by Robinson7.



Their work can therefore be used to check the ’res(xlts obtained ‘in

‘

the present paper.

SCHRODINGER EQUATION

The Scﬁrodinger equation for the system (atomic unité),
2 2 &t
<‘iv 4—.—“¢.—-4—W)}0=0, (10)
Ve b

may be separated by introducing confocal velliptié (prolate spheroidal)

coordin#tes g s ‘z s 75, the first two being defined by
" f = C\Q 4—(,,)/« ) "z 2 (i~ ‘Q,)/R 5 (11)

and § being the azimuthal angle. For Z states, which are

axially synimetric, the wave function may be written in the form
o= Hiy) X()- o (12)
The functions H and X satisfy the 'inner' and 'outer' equations .

;%’[Cl-q‘)%] + [f lpfi«l —lo’_'(l—jl) + C] H=-0



d1-niE] + [apness ped -clx=0
(1 €T € o), 4)

where (assuming a bound state, W < O ) the parameters O , p and k
can be thought of as corresponding to W/Zz, RZ and ZaZb/z? R

and are defined by
o X
P = -JS.RV\/; (15)

e = K2/2p, (16)

'& = KC%A‘— ‘21)/21\9. (17)

The .differential equations (13) and (14) only have square-
integrablesolutions if the separation constant C has certain

functional forms, say C. (p,k) and Cou

inner er (p)d’)- The

t
relations between the parameters ¢ and k , which are equivalent
. ) ) q

to the electronic energy eigenvalues W as functions of RZ and

Zazb/Z2 , are then given by the equations

C (p,k) = C oo (Pro) (18).

Al
lhnev

The procedure we shall follow to obtain the dependence of W

on R when R 1is small is essentially that introduced by




R

oy 8 . . , . .
Hylleraas in solving the equations to any accuracy. The function
'H(q')'is expanded in terms of Legendre polynomials, and from the
resulting determinant of elimination the separation eigen-constant

2
C. can be expressed as a power series in p . The outer
inner’ ' ‘ , .‘
equation for X(£) can be treated in a similar fashion, but the.
determinant of elimination cannot be expanded indefinitely as a
power series in p and ¢ . It is then expedient to return to

the differential equation and solve it in an iterative manner to

obtain the non-analytic terms.

INNER EQUATION

The mathematical properties of this equation arevwell-knowng.

It is convenient to put

mop = <Py,

where the sign of the exponent is unimportant for our purposes;

for definiteness we take the positive sign. Then h(ﬂl) satisfies

f;l[u—»f)%';] b 2pi-) v [C=2pCuirn Th = 0. €O

M

Consider a solution of (20) iﬁ the form8’9
” . .‘
&%) = 2 LRACHS (21)



where 1101) is the -Qﬂkr,Legendre polynomial. By substituting
(21 ) into (20) and using the differential equation and recurrence

relations for 'gl we get10

L eAEA), 2(e+4)
p (DAEED)y b [omre] & = % G b -

(L=01,2,...) (22)

)

with h lE 0 and ho arbitrary. This is a three-term recurrence
relation for the coefficients {HL' The condition that the infinite
series solution (21) is square-integrable is that the determinant

. of elimination vanishes, namely

c 2p(1-k)/3 0 0
-2p (1+k) c-2 4p(2-k)/5 0
0 ~4p(2+k) /3 Cc-6 6p (3-k) /7 .| o=
o 0 -6p (3+k) /5 c-12

(23)

Before considering the solution of (23), it is helpful to
make the following remark. The '"heterogeneity' parameter k defined

by equation (17) .4 pe written in the form




&z = ((—H—%,%b/z‘)(%l/_-lw), _ (24)

It follows that when the system reduces to atom A (ZB = 0) or
atom B (Za ; 0) in thé electronic stéte ﬁith quantum number s Oflb),
k = n or -n irrespecitve of the value of R (and therefore of p ).
Now the separation conséantA C vanishes for the ground state of
the atoms, that is when k = + 1 . Therefore, the ground state

eigen-constant C, satisfying equatioh (23) must have (1 4'12)

inner
as a factor; this conclusion can be confirmed by inspection.
We are interested in solving equation (25) for .small values of

R , that is of p . Expanding the determinant we have
A, + %pPU-dN, =0 e

where Al , and AZ’, are the principal minors obtained by deleting
the first, and the first two, rows and columns.
When p=»0
%
A/p, = —2+ 0 ),
;and, hence the first approximation for "C 1is

C = Lp204t) + 0G9. L (26)

Chwen



Now

o~

by = -y, + |

\

p*(e-4) By,

N

~and therefore by substituting in (25) and noting that

D/dy = -6 + 0™,

the second approximation is

CTmur - ("k-)[SP BSP (”ﬂk‘)+'0(?)
It is clear that the solutions C, (p,k) of equation (23) caﬁ

inner

be written as infinite power series in p2. The higher terms are

readily obtained but will not be considered here.

OUTER EQUATION

1
To solve the outer equation systemically we follow Jaffe 1

and put
—p35 -
X = eP (H'?) F) (28)

and change to the variable

10



J__ E—-—‘ ; E N
= (0 €3 <\

¥+t v }' -,(??)
} ‘ 5 The function F(Z ) satisfies the equation

riease -

) E 2 *F , : \ ’ 17\:-dkF ‘
L Z0-3) o T [\ +20=2p-13 + (1-2>37] =

P

+ [oCe2pd~-C + a8 ]F = O,

e e st LA -

(30)

and may bg expressed as the power series
| R o . R . .
F=27Z <% . - Co (31
n=ao
The coefficients in -  equation (31) satisfy the three-term

recurrence relation
e, + [A-c>~2nlnst 2p-a) ] S + (hf\ -vof):lch_v, =0,
(n= 9 4,2, NN . '(32")
e eqToswemtie o n bt

A= o) ke —C. 6n

11



The condition that the infinite series solution (3l) is square-

integrable is that determinant of elimination vanishes, namely

12 0
A -6 - 2(142p - o) 22
2 2
(1 -¢) A - - f(242p ~o)

(34)

Before proceeding further it is necessary to know the order

of magnitude of the

energy parameter & , in terms of which

the electronic energy is

W =

— 2%/ 21+, (35)

It follows that for the united atom (p=0) in the electronic

state (WL 0),0 =n-1. It is then easy to see that O = O(Pz)

for the ground state of interest.

Returning to the determinantal equation (34) , it is obvious

that A= 0 (crz) =0 (p4). To proceed further reqtires some care.

Let us focus attention on the leading term in A , which is of

order p4

or higher.

Then we can replace equation (3%) by

12



13

A - ¢r2 12 0
s? -2(1+2p) 22
~
2 =0,
0 1 ~4(2+2p) .
(36)
which is equivalent to
A - 62 -1 O 0 .
62 ‘ 2(1+2p) -1 0 .
0 ] 2(142p/2) -1 . |=o.
0 0 -1 2(1+2p/3) .
(37)
This determinant’ . ' may be expanded as a continued fraction to

give

i —_—

ool - L |
A=e [\ 2(1ap) — Au2ph)- 2(1+2¢p/3) - ] (38)

To find the term of order 62 we set p = 0 in the continued ..

fraction tb‘geflz



14

l ,
A = d"‘[("‘ - 4 ;L'__“-'l + o(?“)- (39)

The coefficient of (7'2 is 1-& where

T T S

—-—
- e o

2- 2= X- 2-«

Thus ¢( = 1 and the term in 0'2 vanishes. Hence A = o(pA), or in
terms of the original separation constant

C = o(i4+2p) + o + o(pt). 40

ovley

from equation (27) and C from

At this stage, by equating C, outer

inner
equation (40), according to equation (18), the expansion of W
in powers of R through R4 may be found. The next term may no
doubt be obtained by investigating the continued fraction in
equation (38). However, as the analysis required is not familiar,

and the form is not quoted in the readily accessible literature,

we have found it simpler to return to the differential equation.

ANALYSIS OF DIFFERENTIAL EQUATION

The differential equation (30) for F may be written in the

form

(Sdp) e e TG @ -Z1F -0 v




The discussion above has established that T S IO

|

= 0@ ek A= oY),

and it is then evident from the Yfecurrence relation (32) that

’cn = 0( 0‘2) for n> 0 . We therefore put
F= \ +*f
where

s _g(;:—.o) = 0.

Equation '(415:kcan then be written

20 4
d,g(.x ) s (t 3)" ‘;]{a? +-(l.§;)a' —.vl:l-_'-S

. - B8 i v p
= Ly~ s 4T o o

2

where B = & “A = o(l) . . We shall now proceed to solve this

[
'

equation with 'in"éreasing»aegrees of \aécuracy-, ' ) Coty

(42)

(43)

(44)

15



(a) Retain 0(1)

If terms involving 0'2, o, p and B are dropped from

equation (44) we are left with

Y L =
'4“(3“, - = = 0. . , (45)

Hence, by two quadratures

£z - [tgl-odegx = Li(2), (46)
o]

where Li2 igs the dilogarithm functionls. The wave function X ,

given by equations (28) and (42), therefore has the form

S

(b) Retain 0(p)

If terms involving _0'2 and ¢ are omitted from equation (44)

it becomes

M

d /<4 PP T8 |
— S -~ - i —— — ev————
503 T @ tn TS =3y “

This equation mar be integrated once to give

16




-l
(-3

# o= fblo- r>&§ e (- ar.
i

By changing back to the variable E and splitting the integral,

we get

» (3+1) -
T R L LT I
a3 rl T

¥ [8/w - zw»r) {w(mﬂs].} .

where TS

.y oo ’
-
. - e t 4,
es(x) SK . (50)

Now the function f must not 1ncrease w1th ¥ as fast as exg(pr ),
otherwise by equat:mns (28) and (42) the funct1on X(S) wilt. no.é

be. L (1,00), B'ut unless :the coefficient qf exp{Zp(}'-l-l)} in
equation (49) Qanishes, f will increase like exp(2p} ). Hence

we must have
= Yy etPec(lp) + oCp) . (51)
Now

ei(x) = — RogxXy 4+ x + O (x*)

17
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where logy is Euler's constant. Therefore

B = L('pﬂoa_p + Uplogky + o(p D. (52)
The fun(‘:‘tion “!f:.may bé obtained:‘ twthis order ‘of‘accurac'y by inte"éfating

equation (49), but is not quoted since the integral cannot be

'+ "‘expresséd 'in’ terms of familiar functionms.

(c) Neglect 6’2
If only the term in 0‘2 is neglected, equation (44) may still

"' ‘be integrated once to give

oo
T L A -0 o X i _ 2 j
74% = [apasen] epw) { | & O wp) XA
- ,_"g e X (x'—8/lup) X Ax k T (33)
ST Sl . ‘%CT“H) - ‘ . ‘
By the same argument as above, in order for X(¥) to be square

integrable the first integral in the parentheses must vanish. Hence

1 . M . [

B=uplGauw) /T, %) - + o(®), (54)

where r|(y,x) is the incomplete gamma function]'4 defined by

(-]

| —t y-l
My, x) = Se i (55)

X




Clearly, by letting & -> 0 in equation (54) we return to equation
(51). Higher terms in f and B can presumably be found by solving
equation (53) for f , substituting on the right hand side of (44)

and integrating to find a new expression for £ .

ENERGY EXPANSION

The sepérétion eigen-conStaﬁt obtained from the outer equation

in the previous sections may be written

C;&;'=-»:&-Ct+ip) e[ yp dog hpy] + - o(p®). (56)

MR

C e L . v
The relation between & , p and k for the ground state is -

obtained by equating this to € , given by equation (27),

inner
name Iy
L

¢ e
i o

Copur = (I [Ty - Gptruy ] + O o)

LW

To find the expansion of W in powers of R through G(RS), or

i s . X R N
2 Texeh ot more conveniently in powers of s = R%® , we proceed as follows.

Since & = 0(s2), equation (35) can be expanded to give

‘e
W B

W= -522(1- 26 -3c>) + O(sb). - (58)

~ We seek the expansion of @ in powers of s by substituting



20

| p=4is (l}o-)" o | | | (59)
and

= Q-p e, (60)
where P = ZaZb/Z2 , into equations (56) and (57).
By ignoring = | terms of o(ss) this yields

. ) ) ¢ A
c(lrs-4s?) + o*( -S4 25 deg2sy) = 4 ps” ‘l—fg-o('l-”:’) -

+ o(s%). (ct)

By solving iteratively for o and substituting the result

into equation (58) we obtain finally
3 \
w= -z sesm e 4psT - gpl- el stk

v £l sployasy) + & - (17p/12 {55 + 0(5%) . (62

or

o o |
wa -428 FEBRRDT - S Ra @) 4 2o (L-bekn /e )en’

=L n s 1297 s 5)
s = .Qca_(l‘ﬁ‘%(y‘) +1 - Tl%ﬂm%) +’°(‘< :

(63)

The occurrence of Athe term in Rslog R reveals the interesting




fact that thevelggqun;g,energy‘ié not an ana;ytic function of the
interguclear'd%stancé,at R = 0. Ihis resu}t must.glso be ;r;e in
the many-electron case} and presumably neither is the elgctrqnicvenergy
~of polyatomig_molegules‘an ana1ytic function of the various inter-
nuclear distances at the united atom. The loégrithmic_te;m can be
regarded as, a consequence of the coulombic singularities in the
potential. It does not appear in Frost's one-dimensional model in
which the electron is attracted to the nuclei by delte potentials.
It is obvious from equatiopwﬂﬁl)‘that higher terms in the expansion
will also involve log R , and it can easily be seen from equation (54)
for B that a term in R7(1og R)2 will also occur.

"The dependence of W on Z;Zb/Z2 is interesting. It is clear

from the dependence of C, on k? , which involves/3== 42;Zb/Z?

nner

linearly, that W can be expanded in a power series in’g about

f= 0. Equation (6) may therefore be written in the form

W= 2% ) (Bnl??) w,(ry). 60
f h= O Co v : , o

The = coefficient wl(RZ)'is a first-order energy, and can-be

given explicitly in closed form. It is analytic in RZ at R = 0.

The first logarithmic term occurs in w2 ,which 'is also known’

explicitly in closed form. A noteworthy featdfe Qf the expahéion

(64) is that

“

w, (R¥) = OCR™), (65)



i and -wz from équation (63). The

genéral resﬁlt follows from the fact that 82 is the lowest power

'This'is élearly true for w

of 8 = RZ associated with g in C, ner ° given by equation (57),
and in general by equation (23). One would expect (65) this to be
true also in the mény-electron case, where the coefficients

woo= v (RZ, i/Z) depend also on 1/Z because of electronic '

repulsion.

DISCUSSION

1. Coefficient W2

It follows from equation (63) by comparison with equation (2)

.that : '
W '— N 9 : L e
Wy, = 3 AkZ . . (66)

* This agrees with the result obtained from the general formula (3)
by inserting PUA(O) for the ground state (1ls) of a one-electron
atom, namely Zaln , and setting the field gradient equal to zero.

EE S

2. Coefficient W3

from (63) we have

= p 3
Wiz ~3ab2, (67

22



1)
’ Co T _:.' : o o o ,{“
which agrees with the general formula (4). However, it does not.V
‘:._ ,.',.

agree with Bingel's2 original formula, which had the wrong

dependence on ZaZb/Z2 , namely .
SR | . = Aa* 1‘." Yo
s
. - - 1 - 2
o = ~E@Eaa)(-aulz) 2. (68)
‘.3;’ﬁé11mannFFé§hhan Theorem
For a one-electron atom in the ground state equatfoﬁs (8)

and (9)‘heconie L ‘ S L

GWhZE) = @k R)exp(-21R) — 1R,
hao

S _’.‘;. ; 3—2 . F S

= —a - 300 e’ - 2t + E ke o)
"An identical expression is obtained by differentiating equation

(63) with respect to 2, .. .. . S R A0 A

) B
. - 4. Perturbation of atom A by charge ‘Zb

As mentioned earlier, the perturbation’ of a one-electrion

~ atom, with atomic number Z;‘; by a éﬁérge“-zs "at’'distance R ,
. 6,7

can be treated analytically, ' The second order energy IS;{

23



W= LEWHE) = a5 - (oruxaee™
TR l )
F (32 + 70 e v 4x S )e N
r 22+ e (re ) el (-x) 4—1!470(39'&

+2{0h-nre £ £ -3 b atxaade o0 |

(70)
where x = 2RZa . When this expression is exganQed in pqwers of
X we get |
T R T LAy -y SYvey

+ %’oxs + o(xs).l (71)
An identical gxpression is obtained for the coefficient of

sz from equation (63).

5. United atom perturbation treatment

levine has evaluated the second-order energy E(z) in closed
form for the perturbation treatment of a homonuclear one-electron
molecule (H;) based on the united atom at the centre of charge

(mid-point). The first-order emergy in this treatment is (s = RZ)

EG) - 2’—[:| ret ﬂl(l-e‘s)/s]a

]}

Lo Lgd L

24
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THé‘exphﬁéion'bf'the second-order energy. quoted by Lgvingé is

it

L3
‘1)- [—‘ : Qos 36‘2035 + O(Ss)] (73)

By combining (72) ‘and' (74), and including the zeroth-order energy,

we obtain
W, +E“’1—E“’.—.
Lo 4 €3 gt LS . (s$’ 74
3__[ 6sv+ s 365%3 +0(3)]. (74)

al60

‘The expansion (62) for the homonuclear case (f«-,-' 1) is

3 ¢ _ L Sone 20651
N % [ R ‘,,.,slv LS +'23‘-°—3 Slgas 4"0(3)]. (75)

We see that the united atom perturbation treatment thr.ough,.;E(z)
R gives the correct numerical coefficients for Rz, and R3 2, but
“'not those for the terms : Ra and R5 log R . . We deduce that

T ED 45 of order r* , and probably contains a logarithmic term.
It appears to be very difficuit to predict the order in R of

'the'peftlirbat'ion energies E(n) for this treatment.

CONCLUBIONS

The most striking result is the presence of logarithmic terms

in the electronic energy of a molecule near the united atom. This
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mnyvbé‘COﬁpafed'ﬁith the presence bf exponentially small terms
in R , as well as inverse powers Qf R , in the asymptotic
3'behavioﬁ; 5£ ;hg;eléctfbﬁio;énergyvﬂegr‘infinite sebgééfio;:' The
leading exponential terms have recently been obtained explicitly
" for a homornucléar one-eleétron méolecule by Orchinnikov and
Sukhanovls. However, the physical origin of the two kinds of
terms is quite different.
, The “other re.,s'ult-: of intérest”is the 'simplicity of the
expansion (64) of W in powers ofv ZaZb/Z2 , as ré?eéled by (65).
In this’éxpansibh the term 'Ra*appears as the'leading:second-

order term, in contradistinction to the united atom perturbation

P s e ¥

‘treatment.’ Althbaéﬁ it is not p§ssibié,to ﬁrite qhé;msleculaf
Hamiltonian with ZaZb/Z2 as a linear perturbation parameter,
‘fhe7coefficiént33“wn in - (64) are simply relatéd to a finite
" sum of the pefturbatibn’enefgieS'aésociated with-the perturbation
of an atom by a small chafge}’zzb ; at distance R . It follows
“that  if - (65) 1is ‘true in thé‘maﬁy-eléctr;n case, the coefficient
JWL ;and'the'higﬁéf tefmsfof‘équatidn‘(Z) may be obtained:by--
considering the perturbation of.én atom by a -small charge. This
is equivalent to a united atom perturbation treatment in which
the united atom remains at dne of the nuclei, instead of being

placed at the centre of nuclear charge.

Y
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